Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function

نویسندگان

چکیده

We consider the elliptic problem $$ - \Delta_A u + = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , for \(x \in \mathbb{R}^N\), \( 1 < q 2 p 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u H^1_A(\mathbb{R}^N)\) and \(A:\mathbb{R}^N \to \mathbb{R}^N\) magnetic potential. Exploring Bahri-Li argument preliminary results we will discuss existence of four nontrivial solutions to in question.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

EXISTENCE OF POSITIVE AND SIGN-CHANGING SOLUTIONS FOR p-LAPLACE EQUATIONS WITH POTENTIALS IN R

We study the perturbed equation −ε div(|∇u|p−2∇u) + V (x)|u|p−2u = h(x, u) + K(x)|u| −2u, x ∈ R u(x)→ 0 as |x| → ∞ . where 2 ≤ p < N , p∗ = pN N−p , p < q < p ∗. Under proper conditions on V (x) and h(x, u), we obtain the existence and multiplicity of solutions. We also study the existence of solutions which change sign.

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Existence of multiple positive solutions for a p-Laplacian system with sign-changing weight functions

A p-Laplacian system with Dirichlet boundary conditions is investigated. By analysis of the relationship between the Nehari manifold and fibering maps, we will show how the Nehari manifold changes as λ,μ varies and try to establish the existence of multiple positive solutions. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2023

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2023.47