Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function
نویسندگان
چکیده
We consider the elliptic problem $$ - \Delta_A u + = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , for \(x \in \mathbb{R}^N\), \( 1 < q 2 p 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u H^1_A(\mathbb{R}^N)\) and \(A:\mathbb{R}^N \to \mathbb{R}^N\) magnetic potential. Exploring Bahri-Li argument preliminary results we will discuss existence of four nontrivial solutions to in question.
منابع مشابه
Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملEXISTENCE OF POSITIVE AND SIGN-CHANGING SOLUTIONS FOR p-LAPLACE EQUATIONS WITH POTENTIALS IN R
We study the perturbed equation −ε div(|∇u|p−2∇u) + V (x)|u|p−2u = h(x, u) + K(x)|u| −2u, x ∈ R u(x)→ 0 as |x| → ∞ . where 2 ≤ p < N , p∗ = pN N−p , p < q < p ∗. Under proper conditions on V (x) and h(x, u), we obtain the existence and multiplicity of solutions. We also study the existence of solutions which change sign.
متن کاملMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کاملExistence of multiple positive solutions for a p-Laplacian system with sign-changing weight functions
A p-Laplacian system with Dirichlet boundary conditions is investigated. By analysis of the relationship between the Nehari manifold and fibering maps, we will show how the Nehari manifold changes as λ,μ varies and try to establish the existence of multiple positive solutions. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Differential Equations
سال: 2023
ISSN: ['1072-6691']
DOI: https://doi.org/10.58997/ejde.2023.47